모두의 코드
VINSERTF128, VINSERTF32x4, VINSERTF64x2, VINSERTF32x8, VINSERTF64x4s (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 685 번 읽혔습니다.

VINSERTF128, VINSERTF32x4, VINSERTF64x2, VINSERTF32x8, VINSERTF64x4

Insert Packed Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A.W0 18 /r ib
VINSERTF128 ymm1 ymm2 xmm3/m128 imm8

RVMI

V/V

AVX

Insert 128 bits of packed floating-point values from xmm3/m128 and the remaining values from ymm2 into ymm1.

EVEX.NDS.256.66.0F3A.W0 18 /r ibVINSERTF32X4 ymm1 {k1}{z}, ymm2, xmm3/m128, imm8

T4

V/V

AVX512VL
AVX512F

Insert 128 bits of packed single-precision floating-point values from xmm3/m128 and the remaining values from ymm2 into ymm1 under writemask k1.

EVEX.NDS.512.66.0F3A.W0 18 /r ibVINSERTF32X4 zmm1 {k1}{z}, zmm2, xmm3/m128, imm8

T4

V/V

AVX512F

Insert 128 bits of packed single-precision floating-point values from xmm3/m128 and the remaining values from zmm2 into zmm1 under writemask k1.

EVEX.NDS.256.66.0F3A.W1 18 /r ibVINSERTF64X2 ymm1 {k1}{z}, ymm2, xmm3/m128, imm8

T2

V/V

AVX512VL
AVX512DQ

Insert 128 bits of packed double-precision floating-point values from xmm3/m128 and the remaining values from ymm2 into ymm1 under writemask k1.

EVEX.NDS.512.66.0F3A.W1 18 /r ibVINSERTF64X2 zmm1 {k1}{z}, zmm2, xmm3/m128, imm8

T2

V/V

AVX512DQ

Insert 128 bits of packed double-precision floating-point values from xmm3/m128 and the remaining values from zmm2 into zmm1 under writemask k1.

EVEX.NDS.512.66.0F3A.W0 1A /r ibVINSERTF32X8 zmm1 {k1}{z}, zmm2, ymm3/m256, imm8

T8

V/V

AVX512DQ

Insert 256 bits of packed single-precision floating-point values from ymm3/m256 and the remaining values from zmm2 into zmm1 under writemask k1.

EVEX.NDS.512.66.0F3A.W1 1A /r ibVINSERTF64X4 zmm1 {k1}{z}, zmm2, ymm3/m256, imm8

T4

V/V

AVX512F

Insert 256 bits of packed double-precision floating-point values from ymm3/m256 and the remaining values from zmm2 into zmm1 under writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RVMI

ModRM:reg (w)

VEX.vvvv

ModRM:r/m (r)

Imm8

T2, T4, T8

ModRM:reg (w)

EVEX.vvvv

ModRM:r/m (r)

Imm8

Description

VINSERTF128/VINSERTF32x4 and VINSERTF64x2 insert 128-bits of packed floating-point values from the second source operand (the third operand) into the destination operand (the first operand) at an 128-bit granularity offset multiplied by imm8[0] (256-bit) or imm8[1:0]. The remaining portions of the destination operand are copied from the corresponding fields of the first source operand (the second operand). The second source operand can be either an XMM register or a 128-bit memory location. The destination and first source operands are vector registers.

VINSERTF32x4: The destination operand is a ZMM/YMM register and updated at 32-bit granularity according to the writemask. The high 6/7 bits of the immediate are ignored.

VINSERTF64x2: The destination operand is a ZMM/YMM register and updated at 64-bit granularity according to the writemask. The high 6/7 bits of the immediate are ignored.

VINSERTF32x8 and VINSERTF64x4 inserts 256-bits of packed floating-point values from the second source operand (the third operand) into the destination operand (the first operand) at a 256-bit granular offset multiplied by imm8[0]. The remaining portions of the destination are copied from the corresponding fields of the first source operand (the second operand). The second source operand can be either an YMM register or a 256-bit memory location. The high 7 bits of the immediate are ignored. The destination operand is a ZMM register and updated at 32/64-bit granularity according to the writemask.

Operation

VINSERTF32x4 (EVEX encoded versions)

(KL, VL) = (8, 256), (16, 512)
TEMP_DEST[VL-1:0] <-  SRC1[VL-1:0]
IF VL = 256
    CASE (imm8[0]) OF
          0:  TMP_DEST[127:0] <-  SRC2[127:0]
          1:  TMP_DEST[255:128] <-  SRC2[127:0]
    ESAC.
FI;
IF VL = 512
    CASE (imm8[1:0]) OF
          00:  TMP_DEST[127:0] <-  SRC2[127:0]
          01:  TMP_DEST[255:128] <-  SRC2[127:0]
          10:  TMP_DEST[383:256] <-  SRC2[127:0]
          11:  TMP_DEST[511:384] <-  SRC2[127:0]
    ESAC.
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  TMP_DEST[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VINSERTF64x2 (EVEX encoded versions)

(KL, VL) = (4, 256), (8, 512)
TEMP_DEST[VL-1:0] <-  SRC1[VL-1:0]
IF VL = 256
    CASE (imm8[0]) OF
          0:  TMP_DEST[127:0] <-  SRC2[127:0]
          1:  TMP_DEST[255:128] <-  SRC2[127:0]
    ESAC.
FI;
IF VL = 512
    CASE (imm8[1:0]) OF
          00:  TMP_DEST[127:0] <-  SRC2[127:0]
          01:  TMP_DEST[255:128] <-  SRC2[127:0]
          10:  TMP_DEST[383:256] <-  SRC2[127:0]
          11:  TMP_DEST[511:384] <-  SRC2[127:0]
    ESAC.
FI;
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-  TMP_DEST[i+63:i]
          ELSE 
IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VINSERTF32x8 (EVEX.U1.512 encoded version)

TEMP_DEST[VL-1:0] <-  SRC1[VL-1:0]
CASE (imm8[0]) OF
    0: TMP_DEST[255:0] <-  SRC2[255:0]
    1: TMP_DEST[511:256] <-  SRC2[255:0]
ESAC.
FOR j <-  0 TO 15
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  TMP_DEST[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VINSERTF64x4 (EVEX.512 encoded version)

VL = 512
TEMP_DEST[VL-1:0] <-  SRC1[VL-1:0]
CASE (imm8[0]) OF
    0: TMP_DEST[255:0] <-  SRC2[255:0]
    1: TMP_DEST[511:256] <-  SRC2[255:0]
ESAC.
FOR j <-  0 TO 7
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN DEST[i+63:i] <-  TMP_DEST[i+63:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VINSERTF128 (VEX encoded version)

TEMP[255:0] <- SRC1[255:0]
CASE (imm8[0]) OF
    0: TEMP[127:0] <- SRC2[127:0]
    1: TEMP[255:128] <- SRC2[127:0]
ESAC
DEST <- TEMP

Intel C/C++ Compiler Intrinsic Equivalent

VINSERTF32x4 __m512 _mm512_insertf32x4(__m512 a, __m128 b, int imm);
VINSERTF32x4 __m512 _mm512_mask_insertf32x4(__m512 s, __mmask16 k, __m512 a,
                                            __m128 b, int imm);
VINSERTF32x4 __m512 _mm512_maskz_insertf32x4(__mmask16 k, __m512 a, __m128 b,
                                             int imm);
VINSERTF32x4 __m256 _mm256_insertf32x4(__m256 a, __m128 b, int imm);
VINSERTF32x4 __m256 _mm256_mask_insertf32x4(__m256 s, __mmask8 k, __m256 a,
                                            __m128 b, int imm);
VINSERTF32x4 __m256 _mm256_maskz_insertf32x4(__mmask8 k, __m256 a, __m128 b,
                                             int imm);
VINSERTF32x8 __m512 _mm512_insertf32x8(__m512 a, __m256 b, int imm);
VINSERTF32x8 __m512 _mm512_mask_insertf32x8(__m512 s, __mmask16 k, __m512 a,
                                            __m256 b, int imm);
VINSERTF32x8 __m512 _mm512_maskz_insertf32x8(__mmask16 k, __m512 a, __m256 b,
                                             int imm);
VINSERTF64x2 __m512d _mm512_insertf64x2(__m512d a, __m128d b, int imm);
VINSERTF64x2 __m512d _mm512_mask_insertf64x2(__m512d s, __mmask8 k, __m512d a,
                                             __m128d b, int imm);
VINSERTF64x2 __m512d _mm512_maskz_insertf64x2(__mmask8 k, __m512d a, __m128d b,
                                              int imm);
VINSERTF64x2 __m256d _mm256_insertf64x2(__m256d a, __m128d b, int imm);
VINSERTF64x2 __m256d _mm256_mask_insertf64x2(__m256d s, __mmask8 k, __m256d a,
                                             __m128d b, int imm);
VINSERTF64x2 __m256d _mm256_maskz_insertf64x2(__mmask8 k, __m256d a, __m128d b,
                                              int imm);
VINSERTF64x4 __m512d _mm512_insertf64x4(__m512d a, __m256d b, int imm);
VINSERTF64x4 __m512d _mm512_mask_insertf64x4(__m512d s, __mmask8 k, __m512d a,
                                             __m256d b, int imm);
VINSERTF64x4 __m512d _mm512_maskz_insertf64x4(__mmask8 k, __m512d a, __m256d b,
                                              int imm);
VINSERTF128 __m256 _mm256_insertf128_ps(__m256 a, __m128 b, int offset);
VINSERTF128 __m256d _mm256_insertf128_pd(__m256d a, __m128d b, int offset);
VINSERTF128 __m256i _mm256_insertf128_si256(__m256i a, __m128i b, int offset);

SIMD Floating-Point Exceptions

None

Other Exceptions

VEX-encoded instruction, see Exceptions Type 6; additionally

#UD If VEX.L = 0.

EVEX-encoded instruction, see Exceptions Type E6NF.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..