모두의 코드
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PDs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 490 번 읽혔습니다.

VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD

Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 96 /r
VFMADDSUB132PD xmm1 xmm2 xmm3/m128

RVM

V/V

FMA

Multiply packed double-precision floating-point values from xmm1 and xmm3/mem, add/subtract elements in xmm2 and put result in xmm1.

VEX.DDS.128.66.0F38.W1 A6 /r
VFMADDSUB213PD xmm1 xmm2 xmm3/m128

RVM

V/V

FMA

Multiply packed double-precision floating-point values from xmm1 and xmm2, add/subtract elements in xmm3/mem and put result in xmm1.

VEX.DDS.128.66.0F38.W1 B6 /r
VFMADDSUB231PD xmm1 xmm2 xmm3/m128

RVM

V/V

FMA

Multiply packed double-precision floating-point values from xmm2 and xmm3/mem, add/subtract elements in xmm1 and put result in xmm1.

VEX.DDS.256.66.0F38.W1 96 /r
VFMADDSUB132PD ymm1 ymm2 ymm3/m256

RVM

V/V

FMA

Multiply packed double-precision floating-point values from ymm1 and ymm3/mem, add/subtract elements in ymm2 and put result in ymm1.

VEX.DDS.256.66.0F38.W1 A6 /r
VFMADDSUB213PD ymm1 ymm2 ymm3/m256

RVM

V/V

FMA

Multiply packed double-precision floating-point values from ymm1 and ymm2, add/subtract elements in ymm3/mem and put result in ymm1.

VEX.DDS.256.66.0F38.W1 B6 /r
VFMADDSUB231PD ymm1 ymm2 ymm3/m256

RVM

V/V

FMA

Multiply packed double-precision floating-point values from ymm2 and ymm3/mem, add/subtract elements in ymm1 and put result in ymm1.

EVEX.DDS.128.66.0F38.W1 A6 /r
VFMADDSUB213PD xmm1 {k1}{z} xmm2 xmm3/m128/m64bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed double-precision floating-point values from xmm1 and xmm2, add/subtract elements in xmm3/m128/m64bcst and put result in xmm1 subject to writemask k1.

EVEX.DDS.128.66.0F38.W1 B6 /r
VFMADDSUB231PD xmm1 {k1}{z} xmm2 xmm3/m128/m64bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed double-precision floating-point values from xmm2 and xmm3/m128/m64bcst, add/subtract elements in xmm1 and put result in xmm1 subject to writemask k1.

EVEX.DDS.128.66.0F38.W1 96 /r
VFMADDSUB132PD xmm1 {k1}{z} xmm2 xmm3/m128/m64bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed double-precision floating-point values from xmm1 and xmm3/m128/m64bcst, add/subtract elements in xmm2 and put result in xmm1 subject to writemask k1.

EVEX.DDS.256.66.0F38.W1 A6 /r
VFMADDSUB213PD ymm1 {k1}{z} ymm2 ymm3/m256/m64bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed double-precision floating-point values from ymm1 and ymm2, add/subtract elements in ymm3/m256/m64bcst and put result in ymm1 subject to writemask k1.

EVEX.DDS.256.66.0F38.W1 B6 /r
VFMADDSUB231PD ymm1 {k1}{z} ymm2 ymm3/m256/m64bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed double-precision floating-point values from ymm2 and ymm3/m256/m64bcst, add/subtract elements in ymm1 and put result in ymm1 subject to writemask k1.

EVEX.DDS.256.66.0F38.W1 96 /r
VFMADDSUB132PD ymm1 {k1}{z} ymm2 ymm3/m256/m64bcst

FV

V/V

AVX512VL
AVX512F

Multiply packed double-precision floating-point values from ymm1 and ymm3/m256/m64bcst, add/subtract elements in ymm2 and put result in ymm1 subject to writemask k1.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.DDS.512.66.0F38.W1 A6 /r
VFMADDSUB213PD zmm1 {k1}{z} zmm2 zmm3/m512/m64bcst{er}

FV

V/V

AVX512F

Multiply packed double-precision floating-point values from zmm1and zmm2, add/subtract elements in zmm3/m512/m64bcst and put result in zmm1 subject to writemask k1.

EVEX.DDS.512.66.0F38.W1 B6 /r
VFMADDSUB231PD zmm1 {k1}{z} zmm2 zmm3/m512/m64bcst{er}

FV

V/V

AVX512F

Multiply packed double-precision floating-point values from zmm2 and zmm3/m512/m64bcst, add/subtract elements in zmm1 and put result in zmm1 subject to writemask k1.

EVEX.DDS.512.66.0F38.W1 96 /r
VFMADDSUB132PD zmm1 {k1}{z} zmm2 zmm3/m512/m64bcst{er}

FV

V/V

AVX512F

Multiply packed double-precision floating-point values from zmm1 and zmm3/m512/m64bcst, add/subtract elements in zmm2 and put result in zmm1 subject to writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RVM

ModRM:reg (r, w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FV

ModRM:reg (r, w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

VFMADDSUB132PD: Multiplies the two, four, or eight packed double-precision floating-point values from the first source operand to the two or four packed double-precision floating-point values in the third source operand. From the infinite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the even double-precision floating-point values in the second source operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to the destination operand (first source operand).

VFMADDSUB213PD: Multiplies the two, four, or eight packed double-precision floating-point values from the second source operand to the two or four packed double-precision floating-point values in the first source operand. From the infinite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the even double-precision floating-point values in the third source operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to the destination operand (first source operand).

VFMADDSUB231PD: Multiplies the two, four, or eight packed double-precision floating-point values from the second source operand to the two or four packed double-precision floating-point values in the third source operand. From the infinite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the even double-precision floating-point values in the first source operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to the destination operand (first source operand).

EVEX encoded versions: The destination operand (also first source operand) and the second source operand are ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory loca-tion or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is condition-ally updated with write mask k1.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in regfield. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit memory location and encoded in rmfield.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in regfield. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit memory location and encoded in rmfield. The upper 128 bits of the YMM destination register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction column.

Operation

VFMADDSUB132PD DEST, SRC2, SRC3

IF (VEX.128) THEN 
    DEST[63:0] <- RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
    DEST[127:64] <- RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
    DEST[MAX_VL-1:128] <- 0
ELSEIF (VEX.256)
    DEST[63:0] <- RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
    DEST[127:64] <- RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
    DEST[191:128] <- RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] - SRC2[191:128])
    DEST[255:192] <- RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] + SRC2[255:192]
FI

VFMADDSUB213PD DEST, SRC2, SRC3

IF (VEX.128) THEN 
    DEST[63:0] <- RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
    DEST[127:64] <- RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
    DEST[MAX_VL-1:128] <- 0
ELSEIF (VEX.256)
    DEST[63:0] <- RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
    DEST[127:64] <- RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
    DEST[191:128] <- RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] - SRC3[191:128])
    DEST[255:192] <- RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] + SRC3[255:192]
FI

VFMADDSUB231PD DEST, SRC2, SRC3

IF (VEX.128) THEN 
    DEST[63:0] <- RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
    DEST[127:64] <- RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
    DEST[MAX_VL-1:128] <- 0
ELSEIF (VEX.256)
    DEST[63:0] <- RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
    DEST[127:64] <- RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
    DEST[191:128] <- RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] - DEST[191:128])
    DEST[255:192] <- RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] + DEST[255:192]
FI

VFMADDSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)

(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN DEST[i+63:i] <-  
                            RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
                      ELSE DEST[i+63:i] <-  
                            RoundFPControl(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB132PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+63:i] <-  
                            RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] - SRC2[i+63:i])
                                  ELSE 
                                        DEST[i+63:i] <-  
                            RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] - SRC2[i+63:i])
                      FI;
                      ELSE 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+63:i] <-  
                            RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[63:0] + SRC2[i+63:i])
                                  ELSE 
                                        DEST[i+63:i] <-  
                            RoundFPControl_MXCSR(DEST[i+63:i]*SRC3[i+63:i] + SRC2[i+63:i])
                      FI;
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)

(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN DEST[i+63:i] <-  
                            RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
                      ELSE DEST[i+63:i] <-  
                            RoundFPControl(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB213PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+63:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[63:0])
                                  ELSE 
                                        DEST[i+63:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] - SRC3[i+63:i])
                            FI;
                      ELSE 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+63:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[63:0])
                                  ELSE 
                                        DEST[i+63:i] <-  
                            RoundFPControl_MXCSR(SRC2[i+63:i]*DEST[i+63:i] + SRC3[i+63:i])
                            FI;
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)

(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN DEST[i+63:i] <-  
                            RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
                      ELSE DEST[i+63:i] <-  
                            RoundFPControl(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VFMADDSUB231PD DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                IF j *is even*
                      THEN 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+63:i] <-  
                                  RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] - DEST[i+63:i])
                                  ELSE 
                                        DEST[i+63:i] <-  
                                  RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] - DEST[i+63:i])
                            FI;
                      ELSE 
                            IF (EVEX.b = 1) 
                                  THEN
                                        DEST[i+63:i] <-  
                                  RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[63:0] + DEST[i+63:i])
                                  ELSE 
                                        DEST[i+63:i] <-  
                                  RoundFPControl_MXCSR(SRC2[i+63:i]*SRC3[i+63:i] + DEST[i+63:i])
                            FI;
                FI
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUBxxxPD __m512d _mm512_fmaddsub_pd(__m512d a, __m512d b, __m512d c);
VFMADDSUBxxxPD __m512d _mm512_fmaddsub_round_pd(__m512d a, __m512d b, __m512d c,
                                                int r);
VFMADDSUBxxxPD __m512d _mm512_mask_fmaddsub_pd(__m512d a, __mmask8 k, __m512d b,
                                               __m512d c);
VFMADDSUBxxxPD __m512d _mm512_maskz_fmaddsub_pd(__mmask8 k, __m512d a,
                                                __m512d b, __m512d c);
VFMADDSUBxxxPD __m512d _mm512_mask3_fmaddsub_pd(__m512d a, __m512d b, __m512d c,
                                                __mmask8 k);
VFMADDSUBxxxPD __m512d _mm512_mask_fmaddsub_round_pd(__m512d a, __mmask8 k,
                                                     __m512d b, __m512d c,
                                                     int r);
VFMADDSUBxxxPD __m512d _mm512_maskz_fmaddsub_round_pd(__mmask8 k, __m512d a,
                                                      __m512d b, __m512d c,
                                                      int r);
VFMADDSUBxxxPD __m512d _mm512_mask3_fmaddsub_round_pd(__m512d a, __m512d b,
                                                      __m512d c, __mmask8 k,
                                                      int r);
VFMADDSUBxxxPD __m256d _mm256_mask_fmaddsub_pd(__m256d a, __mmask8 k, __m256d b,
                                               __m256d c);
VFMADDSUBxxxPD __m256d _mm256_maskz_fmaddsub_pd(__mmask8 k, __m256d a,
                                                __m256d b, __m256d c);
VFMADDSUBxxxPD __m256d _mm256_mask3_fmaddsub_pd(__m256d a, __m256d b, __m256d c,
                                                __mmask8 k);
VFMADDSUBxxxPD __m128d _mm_mask_fmaddsub_pd(__m128d a, __mmask8 k, __m128d b,
                                            __m128d c);
VFMADDSUBxxxPD __m128d _mm_maskz_fmaddsub_pd(__mmask8 k, __m128d a, __m128d b,
                                             __m128d c);
VFMADDSUBxxxPD __m128d _mm_mask3_fmaddsub_pd(__m128d a, __m128d b, __m128d c,
                                             __mmask8 k);
VFMADDSUBxxxPD __m128d _mm_fmaddsub_pd(__m128d a, __m128d b, __m128d c);
VFMADDSUBxxxPD __m256d _mm256_fmaddsub_pd(__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Exceptions Type 2.

EVEX-encoded instructions, see Exceptions Type E2.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..