모두의 코드
VFMADD132SD, VFMADD213SD, VFMADD231SDs (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 650 번 읽혔습니다.

VFMADD132SD, VFMADD213SD, VFMADD231SD

Fused Multiply-Add of Scalar Double-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W1 99 /r
VFMADD132SD xmm1 xmm2 xmm3/m64

RVM

V/V

FMA

Multiply scalar double-precision floating-point value from xmm1 and xmm3/m64, add to xmm2 and put result in xmm1.

VEX.DDS.LIG.66.0F38.W1 A9 /r
VFMADD213SD xmm1 xmm2 xmm3/m64

RVM

V/V

FMA

Multiply scalar double-precision floating-point value from xmm1 and xmm2, add to xmm3/m64 and put result in xmm1.

VEX.DDS.LIG.66.0F38.W1 B9 /r
VFMADD231SD xmm1 xmm2 xmm3/m64

RVM

V/V

FMA

Multiply scalar double-precision floating-point value from xmm2 and xmm3/m64, add to xmm1 and put result in xmm1.

EVEX.DDS.LIG.66.0F38.W1 99 /r
VFMADD132SD xmm1 {k1}{z} xmm2 xmm3/m64{er}

T1S

V/V

AVX512F

Multiply scalar double-precision floating-point value from xmm1 and xmm3/m64, add to xmm2 and put result in xmm1.

EVEX.DDS.LIG.66.0F38.W1 A9 /r
VFMADD213SD xmm1 {k1}{z} xmm2 xmm3/m64{er}

T1S

V/V

AVX512F

Multiply scalar double-precision floating-point value from xmm1 and xmm2, add to xmm3/m64 and put result in xmm1.

EVEX.DDS.LIG.66.0F38.W1 B9 /r
VFMADD231SD xmm1 {k1}{z} xmm2 xmm3/m64{er}

T1S

V/V

AVX512F

Multiply scalar double-precision floating-point value from xmm2 and xmm3/m64, add to xmm1 and put result in xmm1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RVM

ModRM:reg (r, w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

T1S

ModRM:reg (r, w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Performs a SIMD multiply-add computation on the low double-precision floating-point values using three source operands and writes the multiply-add result in the destination operand. The destination operand is also the first source operand. The first and second operand are XMM registers. The third source operand can be an XMM register or a 64-bit memory location.

VFMADD132SD: Multiplies the low double-precision floating-point value from the first source operand to the low double-precision floating-point value in the third source operand, adds the infinite precision intermediate result to the low double-precision floating-point values in the second source operand, performs rounding and stores the resulting double-precision floating-point value to the destination operand (first source operand).

VFMADD213SD: Multiplies the low double-precision floating-point value from the second source operand to the low double-precision floating-point value in the first source operand, adds the infinite precision intermediate result to the low double-precision floating-point value in the third source operand, performs rounding and stores the resulting double-precision floating-point value to the destination operand (first source operand).

VFMADD231SD: Multiplies the low double-precision floating-point value from the second source to the low double-precision floating-point value in the third source operand, adds the infinite precision intermediate result to the low double-precision floating-point value in the first source operand, performs rounding and stores the resulting double-precision floating-point value to the destination operand (first source operand).

VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in regfield. The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rmfield. Bits 127:64 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.

EVEX encoded version: The low quadword element of the destination is updated according to the writemask.

Operation

VFMADD132SD DEST, SRC2, SRC3 (EVEX encoded version)

IF (EVEX.b = 1) and SRC3 *is a register*
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
    THEN DEST[63:0] <-  RoundFPControl(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
    ELSE 
          IF *merging-masking* ; merging-masking
                THEN *DEST[63:0] remains unchanged*
                ELSE  ; zeroing-masking
                      THEN DEST[63:0] <-  0
          FI;
FI;
DEST[127:64] <-  DEST[127:64]
DEST[MAX_VL-1:128] <-  0

VFMADD213SD DEST, SRC2, SRC3 (EVEX encoded version)

IF (EVEX.b = 1) and SRC3 *is a register*
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
    THEN DEST[63:0] <-  RoundFPControl(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
    ELSE 
          IF *merging-masking* ; merging-masking
                THEN *DEST[63:0] remains unchanged*
                ELSE  ; zeroing-masking
                      THEN DEST[63:0] <-  0
          FI;
FI;
DEST[127:64] <-  DEST[127:64]
DEST[MAX_VL-1:128] <-  0

VFMADD231SD DEST, SRC2, SRC3 (EVEX encoded version)

IF (EVEX.b = 1) and SRC3 *is a register*
    THEN
          SET_RM(EVEX.RC);
    ELSE 
          SET_RM(MXCSR.RM);
FI;
IF k1[0] or *no writemask*
    THEN DEST[63:0] <-  RoundFPControl(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
    ELSE 
          IF *merging-masking* ; merging-masking
                THEN *DEST[63:0] remains unchanged*
                ELSE  ; zeroing-masking
                      THEN DEST[63:0] <-  0
          FI;
FI;
DEST[127:64] <-  DEST[127:64]
DEST[MAX_VL-1:128] <-  0

VFMADD132SD DEST, SRC2, SRC3 (VEX encoded version)

DEST[63:0] <-  MAX_VL-1:128RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:63] <-  DEST[127:63]
DEST[MAX_VL-1:128] <-  0

VFMADD213SD DEST, SRC2, SRC3 (VEX encoded version)

DEST[63:0] <-  RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:63] <-  DEST[127:63]
DEST[MAX_VL-1:128] <-  0

VFMADD231SD DEST, SRC2, SRC3 (VEX encoded version)

DEST[63:0] <-  RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:63] <-  DEST[127:63]
DEST[MAX_VL-1:128] <-  0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDxxxSD __m128d _mm_fmadd_round_sd(__m128d a, __m128d b, __m128d c, int r);
VFMADDxxxSD __m128d _mm_mask_fmadd_sd(__m128d a, __mmask8 k, __m128d b,
                                      __m128d c);
VFMADDxxxSD __m128d _mm_maskz_fmadd_sd(__mmask8 k, __m128d a, __m128d b,
                                       __m128d c);
VFMADDxxxSD __m128d _mm_mask3_fmadd_sd(__m128d a, __m128d b, __m128d c,
                                       __mmask8 k);
VFMADDxxxSD __m128d _mm_mask_fmadd_round_sd(__m128d a, __mmask8 k, __m128d b,
                                            __m128d c, int r);
VFMADDxxxSD __m128d _mm_maskz_fmadd_round_sd(__mmask8 k, __m128d a, __m128d b,
                                             __m128d c, int r);
VFMADDxxxSD __m128d _mm_mask3_fmadd_round_sd(__m128d a, __m128d b, __m128d c,
                                             __mmask8 k, int r);
VFMADDxxxSD __m128d _mm_fmadd_sd(__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

VEX-encoded instructions, see Exceptions Type 3.

EVEX-encoded instructions, see Exceptions Type E3.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..