모두의 코드
VEXPANDPD (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 553 번 읽혔습니다.

VEXPANDPD

Load Sparse Packed Double-Precision Floating-Point Values from Dense Memory

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EVEX.128.66.0F38.W1 88 /r
VEXPANDPD xmm1 {k1}{z} xmm2/m128

T1S

V/V

AVX512VL
AVX512F

Expand packed double-precision floating-point values from xmm2/m128 to xmm1 using writemask k1.

EVEX.256.66.0F38.W1 88 /r
VEXPANDPD ymm1 {k1}{z} ymm2/m256

T1S

V/V

AVX512VL
AVX512F

Expand packed double-precision floating-point values from ymm2/m256 to ymm1 using writemask k1.

EVEX.512.66.0F38.W1 88 /r
VEXPANDPD zmm1 {k1}{z} zmm2/m512

T1S

V/V

AVX512F

Expand packed double-precision floating-point values from zmm2/m512 to zmm1 using writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

T1S

ModRM:reg (w)

ModRM:r/m (r)

NA

NA

Description

Expand (load) up to 8/4/2, contiguous, double-precision floating-point values of the input vector in the source operand (the second operand) to sparse elements in the destination operand (the first operand) selected by the writemask k1.

The destination operand is a ZMM/YMM/XMM register, the source operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location.

The input vector starts from the lowest element in the source operand. The writemask register k1 selects the desti-nation elements (a partial vector or sparse elements if less than 8 elements) to be replaced by the ascending elements in the input vector. Destination elements not selected by the writemask k1 are either unmodified or zeroed, depending on EVEX.z.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element instead of the size of the full vector.

Operation

VEXPANDPD (EVEX encoded versions)

(KL, VL) = (2, 128), (4, 256), (8, 512)
k <-  0
FOR j <-  0 TO KL-1
    i <-  j * 64
    IF k1[j] OR *no writemask*
          THEN 
                DEST[i+63:i] <-  SRC[k+63:k];
                k <-  k + 64
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+63:i] remains unchanged*
                      ELSE  ; zeroing-masking
                            THEN DEST[i+63:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-!= 0

Intel C/C++ Compiler Intrinsic Equivalent

VEXPANDPD __m512d _mm512_mask_expand_pd(__m512d s, __mmask8 k, __m512d a);
VEXPANDPD __m512d _mm512_maskz_expand_pd(__mmask8 k, __m512d a);
VEXPANDPD __m512d _mm512_mask_expandloadu_pd(__m512d s, __mmask8 k, void* a);
VEXPANDPD __m512d _mm512_maskz_expandloadu_pd(__mmask8 k, void* a);
VEXPANDPD __m256d _mm256_mask_expand_pd(__m256d s, __mmask8 k, __m256d a);
VEXPANDPD __m256d _mm256_maskz_expand_pd(__mmask8 k, __m256d a);
VEXPANDPD __m256d _mm256_mask_expandloadu_pd(__m256d s, __mmask8 k, void* a);
VEXPANDPD __m256d _mm256_maskz_expandloadu_pd(__mmask8 k, void* a);
VEXPANDPD __m128d _mm_mask_expand_pd(__m128d s, __mmask8 k, __m128d a);
VEXPANDPD __m128d _mm_maskz_expand_pd(__mmask8 k, __m128d a);
VEXPANDPD __m128d _mm_mask_expandloadu_pd(__m128d s, __mmask8 k, void* a);
VEXPANDPD __m128d _mm_maskz_expandloadu_pd(__mmask8 k, void* a);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4.nb.

#UD If EVEX.vvvv != 1111B.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..