모두의 코드
UNPCKHPS (Intel x86/64 assembly instruction)

작성일 : 2020-09-01 이 글은 601 번 읽혔습니다.

UNPCKHPS

Unpack and Interleave High Packed Single-Precision Floating-Point Values

참고 사항

아래 표를 해석하는 방법은 x86-64 명령어 레퍼런스 읽는 법 글을 참조하시기 바랍니다.

Opcode/
Instruction

Op /
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

0F 15 /r
UNPCKHPS xmm1 xmm2/m128

RM

V/V

SSE

Unpacks and Interleaves single-precision floating-point values from high quadwords of xmm1 and xmm2/m128.

VEX.NDS.128.0F.WIG 15 /r
VUNPCKHPS xmm1 xmm2 xmm3/m128

RVM

V/V

AVX

Unpacks and Interleaves single-precision floating-point values from high quadwords of xmm2 and xmm3/m128.

VEX.NDS.256.0F.WIG 15 /r
VUNPCKHPS ymm1 ymm2 ymm3/m256

RVM

V/V

AVX

Unpacks and Interleaves single-precision floating-point values from high quadwords of ymm2 and ymm3/m256.

EVEX.NDS.128.0F.W0 15 /r
VUNPCKHPS xmm1 {k1}{z} xmm2 xmm3/m128/m32bcst

FV

V/V

AVX512VL
AVX512F

Unpacks and Interleaves single-precision floating-point values from high quadwords of xmm2 and xmm3/m128/m32bcst and write result to xmm1 subject to writemask k1.

EVEX.NDS.256.0F.W0 15 /r
VUNPCKHPS ymm1 {k1}{z} ymm2 ymm3/m256/m32bcst

FV

V/V

AVX512VL
AVX512F

Unpacks and Interleaves single-precision floating-point values from high quadwords of ymm2 and ymm3/m256/m32bcst and write result to ymm1 subject to writemask k1.

EVEX.NDS.512.0F.W0 15 /r
VUNPCKHPS zmm1 {k1}{z} zmm2 zmm3/m512/m32bcst

FV

V/V

AVX512F

Unpacks and Interleaves single-precision floating-point values from high quadwords of zmm2 and zmm3/m512/m32bcst and write result to zmm1 subject to writemask k1.

Instruction Operand Encoding

Op/En

Operand 1

Operand 2

Operand 3

Operand 4

RM

ModRM:reg (r, w)

ModRM:r/m (r)

NA

NA

RVM

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

NA

FV

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

NA

Description

Performs an interleaved unpack of the high single-precision floating-point values from the first source operand and the second source operand.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be enforced.

VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

VEX.256 encoded version: The second source operand is an YMM register or an 256-bit memory location. The first source operand and destination operands are YMM registers.

7 6 Y 5 Y 7 X X X 6 Y 6 X 3 X Y X 3 Y 1 0 Y 3 X X C R 1 C S 2 S D 2 5 2 Y S 3 0 X 7 4 X T Y 6 4 X X 1 Y Y Y 2 2 Y E 7 R
Figure 4-27. VUNPCKHPS Operation

EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destina-tion operand is a ZMM register, conditionally updated using writemask k1.

EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina-tion operand is a YMM register, conditionally updated using writemask k1.

EVEX.128 encoded version: The first source operand is a XMM register. The second source operand is a XMM register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina-tion operand is a XMM register, conditionally updated using writemask k1.

Operation

VUNPCKHPS (EVEX encoded version when SRC2 is a register)

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL >= 128
    TMP_DEST[31:0] <-  SRC1[95:64]
    TMP_DEST[63:32] <-  SRC2[95:64]
    TMP_DEST[95:64] <-  SRC1[127:96]
    TMP_DEST[127:96] <-  SRC2[127:96]
FI;
IF VL >= 256
    TMP_DEST[159:128] <-  SRC1[223:192]
    TMP_DEST[191:160] <-  SRC2[223:192]
    TMP_DEST[223:192] <-  SRC1[255:224]
    TMP_DEST[255:224] <-  SRC2[255:224]
FI;
IF VL >= 512
    TMP_DEST[287:256] <-  SRC1[351:320]
    TMP_DEST[319:288] <-  SRC2[351:320]
    TMP_DEST[351:320] <-  SRC1[383:352]
    TMP_DEST[383:352] <-  SRC2[383:352]
    TMP_DEST[415:384] <-  SRC1[479:448]
    TMP_DEST[447:416] <-  SRC2[479:448]
    TMP_DEST[479:448] <-  SRC1[511:480]
    TMP_DEST[511:480] <-  SRC2[511:480]
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  TMP_DEST[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+31:i] <-  0
                FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VUNPCKHPS (EVEX encoded version when SRC2 is memory)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF (EVEX.b = 1)
          THEN TMP_SRC2[i+31:i] <-  SRC2[31:0]
          ELSE TMP_SRC2[i+31:i] <-  SRC2[i+31:i]
    FI;
ENDFOR;
IF VL >= 128
    TMP_DEST[31:0] <-  SRC1[95:64]
    TMP_DEST[63:32] <-  TMP_SRC2[95:64]
    TMP_DEST[95:64] <-  SRC1[127:96]
    TMP_DEST[127:96] <-  TMP_SRC2[127:96]
FI;
IF VL >= 256
    TMP_DEST[159:128] <-  SRC1[223:192]
    TMP_DEST[191:160] <-  TMP_SRC2[223:192]
    TMP_DEST[223:192] <-  SRC1[255:224]
    TMP_DEST[255:224] <-  TMP_SRC2[255:224]
FI;
IF VL >= 512
    TMP_DEST[287:256] <-  SRC1[351:320]
    TMP_DEST[319:288] <-  TMP_SRC2[351:320]
    TMP_DEST[351:320] <-  SRC1[383:352]
    TMP_DEST[383:352] <-  TMP_SRC2[383:352]
    TMP_DEST[415:384] <-  SRC1[479:448]
    TMP_DEST[447:416] <-  TMP_SRC2[479:448]
    TMP_DEST[479:448] <-  SRC1[511:480]
    TMP_DEST[511:480] <-  TMP_SRC2[511:480]
FI;
FOR j <-  0 TO KL-1
    i <-  j * 32
    IF k1[j] OR *no writemask*
          THEN DEST[i+31:i] <-  TMP_DEST[i+31:i]
          ELSE 
                IF *merging-masking* ; merging-masking
                      THEN *DEST[i+31:i] remains unchanged*
                      ELSE *zeroing-masking* ; zeroing-masking
                            DEST[i+31:i] <-  0
FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL] <-  0

VUNPCKHPS (VEX.256 encoded version)

DEST[31:0] <- SRC1[95:64]
DEST[63:32] <- SRC2[95:64]
DEST[95:64] <- SRC1[127:96]
DEST[127:96] <- SRC2[127:96]
DEST[159:128] <- SRC1[223:192]
DEST[191:160] <- SRC2[223:192]
DEST[223:192] <- SRC1[255:224]
DEST[255:224] <- SRC2[255:224]
DEST[MAX_VL-1:256] <-  0

VUNPCKHPS (VEX.128 encoded version)

DEST[31:0] <- SRC1[95:64]
DEST[63:32] <- SRC2[95:64]
DEST[95:64] <- SRC1[127:96]
DEST[127:96] <- SRC2[127:96]
DEST[MAX_VL-1:128] <- 0

UNPCKHPS (128-bit Legacy SSE version)

DEST[31:0] <- SRC1[95:64]
DEST[63:32] <- SRC2[95:64]
DEST[95:64] <- SRC1[127:96]
DEST[127:96] <- SRC2[127:96]
DEST[MAX_VL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VUNPCKHPS __m512 _mm512_unpackhi_ps(__m512 a, __m512 b);
VUNPCKHPS __m512 _mm512_mask_unpackhi_ps(__m512 s, __mmask16 k, __m512 a,
                                         __m512 b);
VUNPCKHPS __m512 _mm512_maskz_unpackhi_ps(__mmask16 k, __m512 a, __m512 b);
VUNPCKHPS __m256 _mm256_unpackhi_ps(__m256 a, __m256 b);
VUNPCKHPS __m256 _mm256_mask_unpackhi_ps(__m256 s, __mmask8 k, __m256 a,
                                         __m256 b);
VUNPCKHPS __m256 _mm256_maskz_unpackhi_ps(__mmask8 k, __m256 a, __m256 b);
UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b);
VUNPCKHPS __m128 _mm_mask_unpackhi_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VUNPCKHPS __m128 _mm_maskz_unpackhi_ps(__mmask8 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instructions, see Exceptions Type 4.

EVEX-encoded instructions, see Exceptions Type E4NF.

첫 댓글을 달아주세요!
프로필 사진 없음
강좌에 관련 없이 궁금한 내용은 여기를 사용해주세요

    댓글을 불러오는 중입니다..